rpoN1, but not rpoN2, is required for twitching motility, natural competence, growth on nitrate, and virulence of Ralstonia solanacearum
نویسندگان
چکیده
The plant pathogen Ralstonia solanacearum has two genes encoding for the sigma factor σ(54): rpoN1, located in the chromosome and rpoN2, located in a distinct "megaplasmid" replicon. In this study, individual mutants as well as a double mutant of rpoN were created in R. solanacearum strain GMI1000 in order to determine the extent of functional overlap between these two genes. By virulence assay we observed that rpoN1 is required for virulence whereas rpoN2 is not. In addition rpoN1 controls other important functions such twitching motility, natural transformation and growth on nitrate, unlike rpoN2. The rpoN1 and rpoN2 genes have different expression pattern, the expression of rpoN1 being constitutive whereas rpoN2 expression is induced in minimal medium and in the presence of plant cells. Moreover, the expression of rpoN2 is dependent upon rpoN1. Our work therefore reveals that the two rpoN genes are not functionally redundant in R. solanacearum. A list of potential σ(54) targets was identified in the R. solanacearum genome and suggests that multiple traits are under the control of these regulators. Based on these findings, we provide a model describing the functional connection between RpoN1 and the PehR pathogenicity regulator and their dual role in the control of several R. solanacearum virulence determinants.
منابع مشابه
Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent a...
متن کاملDifferential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth.
The Rhizobium etli rpoN1 gene, encoding the alternative sigma factor sigma54 (RpoN), was recently characterized and shown to be involved in the assimilation of several nitrogen and carbon sources during free-living aerobic growth (J. Michiels, T. Van Soom, I. D'hooghe, B. Dombrecht, T. Benhassine, P. de Wilde, and J. Vanderleyden, J. Bacteriol. 180:1729-1740, 1998). We identified a second rpoN ...
متن کاملRalstonia solanacearum needs Flp pili for virulence on potato.
Type IV pili are virulence factors in various bacteria. Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Although type IVa pili have been implicated in the virulence of Ralstonia solanacearum, type IVb pili have not previously been described in this plant pathogen. Here, we report the characterization of two distinct tad...
متن کاملRalstonia solanacearum pectin methylesterase is required for growth on methylated pectin but not for bacterial wilt virulence
Ralstonia (Pseudomonas) solanacearum causes bacterial wilt, a serious disease of many crop plants. The pathogen produces several extracellular plant cell wall-degrading enzymes, including polygalacturonases (PGs) and pectin methylesterase (Pme). Pme removes methyl groups from pectin, thereby facilitating subsequent breakdown of this cell wall component by PGs, which are known bacterial wilt vir...
متن کاملInvolvement of NpdA, a Putative 2-Nitropropane Dioxygenase, in the T3SS Expression and Full Virulence in Ralstonia solanacearum OE1-1
Previously, we isolated several genes that potentially affected the expression of type III secretion system (T3SS) in Ralstonia solanacearum OE1-1. Here, we focused on the rsp0316, which encodes a putative 2-nitropropane dioxygenase (hereafter designated NpdA). The deletion of npdA substantially reduced the T3SS expression and virulence in OE1-1, and the complementation with functional NpdA cou...
متن کامل